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Brain-derived neurotrophic factor in traumatic brain injury,
post-traumatic stress disorder, and their comorbid
conditions: role in pathogenesis and treatment

Gary B. Kaplan®?, Jennifer J. Vasterling®® and Priyanka C. Vedak®®

As US military service members return from the wars in
Iraq and Afghanistan with elevated rates of traumatic brain
injury (TBI) and post-traumatic stress disorder (PTSD),
attention has been increasingly focused on TBI/PTSD
comorbidity, its neurobiological mechanisms, and novel
and effective treatment approaches. TBI and PTSD, and
their comorbid conditions, present with a spectrum of
common clinical features such as sleep disturbance,
depression, anxiety, irritability, difficulty in concentrating,
fatigue, suicidality, chronic pain, and alterations in arousal.
These TBI and PTSD disorders are also thought to be
characterized by overlapping neural mechanisms. Both
conditions are associated with changes in hippocampal,
prefrontal cortical, and limbic region function because of
alterations in synaptogenesis, dendritic remodeling, and
neurogenesis. Neural changes in TBl and PTSD result from
pathophysiological disturbances in metabolic, cytotoxic,
inflammatory, and apoptic processes, amongst other
mechanisms. Neurotrophins have well-established
actions in regulating cell growth and survival,
differentiation, apoptosis, and cytoskeleton restructuring.
A body of research indicates that dysregulation of neural
brain-derived neurotrophic factor (BDNF) is found in
conditions of TBI and PTSD. Induction of BDNF

As US military service members continue to return from the
wars in Iraq (Operation Iraqi Freedom; OIF) and Afghani-
stan (Operation Enduring Freedom; OEF) with elevated
rates of traumatic brain injury (TBI) and post-traumatic
stress disorder (PTSD), attention has been increasingly
focused on TBI/PTSD comorbidity, neurobiological me-
chanisms, and novel treatment approaches. P1TSD and mild
TBI (mTBI) present with common clinical features, share
more extensive combat as a risk factor (the same specific
event sometimes serving as a precipitating exposure), and
seem to be characterized by overlapping pathophysiological
brain mechanisms. Not surprisingly, there is significant
concern that the two conditions may exacerbate each other,
leading to particularly complicated clinical presentations.
In this study, we examine the dysregulation of brain-derived
neurotrophic factor (BDNF) as a relevant neurobiological
mechanism in both mTBI and PTSD. We also consider
whether treatment-induced enhancements of BDNF can
facilitate both neural integrity and recovery of function in

mTBI and PTSD.
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and activation of its intracellular receptors can produce
neural regeneration, reconnection, and dendritic
sprouting, and can improve synaptic efficacy. In this
review, we consider treatment approaches that enhance
BDNF-related signaling and have the potential to restore
neural connectivity. Such treatment approaches could
facilitate neuroplastic changes that lead to adaptive
neural repair and reverse cognitive and emotional
deficits in both TBI and PTSD. Behavioural Pharmacology
21:427-437 © 2010 Wolters Kluwer Health | Lippincott
Williams & Wilkins.
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Definitions of mild traumatic brain injury

and post-traumatic stress disorder

TBI refers to the injury that may occur subsequent to
the application of a mechanical (e.g. blunt trauma) or
biomechanical (e.g. blast injury) force sufficient to result
in neuronal injury. Battle-related TBI often develops
when a high explosive detonation creates pressure
changes that displace brain structure. The explosive
detonation occurs when a solid or liquid is instanta-
neously converted into a gas under very high pressure,
resulting in a blast wave that induces extreme pressure
oscillation. The rapidly expanding gases first produce
an intense positive pressure wave that flows away from
the explosion, and then produce a drop in atmospheric
pressure that results in a reversed pressure wave (Taber
et al., 2006). Such extreme explosion-induced pressure
differences can result in sudden acceleration, decelera-
tion, and rotation of the head, exerting both the shearing
and tensile forces that cause the primary pathological
changes associated with TBI (Povlishock, 1993; Ray er &/,
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2002). The initial ‘blast wave’ is followed by a negative
pressure wave in which particles of debris, shrapnel, and
fragments can cause secondary injury. Subsequently, tertiary
injuries can result from being thrown to the ground or
against a stationary object such as a wall or vehicle.
Quaternary-level injuries can result from burns, broken
bones, amputations, breathing toxic fumes, or crush injuries
from falling structures after such explosions.

Although sometimes confused with resulting clinical
symptoms, the term “TBI’ in itself does not address
whether or not there is associated clinical dysfunction.
Types of TBI vary greatly in their severity, ranging from
mild injury associated with only brief alterations or loss
of consciousness and limited sequelae (also referred to as
a ‘concussion’), to a very severe injury that is associated
with prolonged coma, enduring brain damage, and clinical
impairment, or even death. In addition to the application
of an external force, the categorization of a head injury as
a TBI also requires at least some alteration of conscious-
ness at the time of injury. For the TBI to be classified as
mild (as opposed to moderate or severe), most classifica-
tion systems and definitions limit the duration of loss of
consciousness to no longer than 30 min and the period of
post-traumatic amnesia (i.e. the failure to reliably form new
memories that can later be reconstructed) to no longer than
24h (Kay e «f, 1993; Holm e al, 2005; Department
of Veterans Affairs and Department of Defense, 2009).
‘Postconcussive syndrome’ refers to clinical symptoms
occurring after the injury, with ‘persistent postconcussive
syndrome’ referring to enduring symptoms (Bigler, 2008).

PTSD is a mental disorder that may follow exposure to
life-threatening, psychologically traumatic events, such
as those commonly occurring in war-zone contexts. The
diagnosis of PT'SD requires exposure to a traumatic event
and an associated response of fear, helplessness, or horror
(American Psychiatric Association, 2000). PTSD symp-
toms include re-experience of the trauma (e.g. night-
mares, intrusive distressing thoughts), avoidance of
reminders of the trauma, emotional numbing (e.g.
restricted range of affect, failure to enjoy earlier enjoyable
activities), and hyperarousal (e.g. irritability, sleep
disturbance, hypervigilance to potential threat). Distin-
guished from acute stress responses, PTSD symptoms
must endure for at least 1 month and result in clinically
significant functional impairment. As with TBI exposures
and postconcussive syndrome, not all people exposed to
a psychological trauma will develop P'I'SD.

Clinical description, epidemiology, and course of
mild traumatic brain injury and post-traumatic
stress disorder in OEF/OIF veterans

With improved battlefield medical care and protective
equipment, service members are currently surviving
injuries that would have proven fatal in earlier wars. In
part related to these increased survival rates, many
service members now return with multiple physical and

psychological injuries. The estimated prevalence rates
of TBI and PTSD among returning OEF/OIF veterans
have varied according to sampling methods and measures,
but a pattern emerges in which significant subsets of
veterans return with either one or both of these condi-
tions. For example, in a crosssectional study of 2234 OEF/
OIF veterans from the Mid-Atlantic US, approximately 12%
of the veterans are screened positive for mTBI and 11% for
PTSD (Schneiderman er 4/, 2008), with significant overlap
in the two groups. Hoge e o/ (2008) similarly found that
approximately 10% of 2525 army soldiers selected from two
combat brigades were screened positive for mT'BI, although
the rates were considerably lower (5%) when the definition
of mTBI was restricted to cases associated with outright loss
of consciousness (as opposed to altered consciousness). Of
those returning service members reporting head injury
with loss of consciousness, approximately 44% also screened
positive for PTSD. Using stratified random sampling to
obtain a more representative sample of contemporary war
zone veterans, Research and development (2008) docu-
mented a somewhat higher prevalence of TBI (19%), but
reported a PTSD prevalence (13%) generally consistent
with other studies (e.g. Hoge er @/, 2004; Vasterling e o/,
2010). Rates of both TBI and PTSD are higher in clinical
samples, receiving care in both Department of Defense and
Department of Veterans Affairs healthcare settings (e.g.
Warden, 2006; Tanelian e @/, 2008; Sayer e af., 2009).

Immediately after being injured, a person with m'TBI may
express a number of postconcussive syndrome symptoms,
including irritability, anxiety, fatigue, sleep disturbance,
trouble concentrating, memory disturbance, and head-
aches (Stein and McAllister, 2009). In addition, soon after
the injury, mTBI may also be associated with measurable
impairment on performance-based neuropsychological
tests. The most frequently observed neuropsychological
performance deficits include impaired speed of informa-
tion processing (Barrow er @/, 2006), working memory
(McAllister ez al., 2006), executive functioning, verbal
fluency, new learning, and memory (Alexander, 1995;
Belanger ¢r al., 2005).

Although recovery from these neuropsychological deficits
of mTBI typically occurs within 1-3 months of injury
(Schretlen and Shapiro, 2003; Belanger e /., 2005), the
course of recovery is far from uniform and less information
is available from military populations. Mild neuropsycho-
logical deficits may persist in a subset of mT'BI cases
(Pertab e al, 2009), with subjective postconcussive
syndrome symptoms persisting in an even larger pro-
portion of mTBI cases. For example, one recent
study suggested that as many as 50% of patients with
complicated mTBI (i.e. showing computerized tomo-
graphic abnormality and/or post-traumatic amnesia great-
er than 24h) and 44% of patients with uncomplicated
mTBI reported at least three postconcussive syndrome
symptoms at 1-year postinjury (Dikmen ez /., 2010). With
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the possible exception of the cumulative effects of
multiple concussions (Guskiewicz e a/, 2003), mTBI
injury attributes seem to be less important predictors
of subsequent recovery than individual difference char-
acteristics such as the clinical context of the assessment
(Belanger e af, 2003), premorbid alcohol use and
psychiatric disorders (Dikmen e 4/, 2010), and subse-
quent life stressors (Ponsford ez /., 2000).

The course of primary PTSD symptoms varies across
individuals, with some trauma survivors showing consis-
tently low levels, or reduction, of symptoms over time,
but others showing a more chronic symptom course (e.g.
Schnurr e @/, 2003; Orcutt e @/, 2004; Solomon and
Mikulincer, 2006). In somewhat smaller subsets of people
exposed to psychological trauma, onset of P'I'SD symp-
toms may even be delayed (Andrews e a/, 2007).
Neuropsychological dysfunction, however, has been well
documented in both acute and chronic presentations
of PTSD (Vasterling ez 4/, 2009), a recent study indi-
cating that neuropsychological dysfunction may increase
as symptoms become more chronic (Marx er a/., 2009).
Finally, PTSD is sometimes associated with physical
symptoms and declines in health-related functioning (e.g.
Jakupcak ez @/, 2008; Vasterling er 4/, 2008; Vanderploeg
et al, 2009), which may progress into cardiovascular
disease and other clinically significant somatic disorders
over time (Kubzansky er @/, 2007; Boscarino, 2008).

In clinical contexts, patients with mTBI and PT'SD often
present with other clinical settings that reflect physical
injuries (e.g. orthopedic injury) extending beyond the
TBI, and other concerns (e.g. substance use disorders,
depression, suicidal behavior, pain disorders) (Sayer ef @/,
2009; Stein and McAllister, 2009). Review of the medical
records of over 300 veterans treated in Veterans Affairs
polytrauma settings, for example, indicated high rates of
chronic pain (82%), PTSD (68%), and persistent post-
concussive syndrome (67%), with 42% of the sample
diagnosed with all three conditions (Lew e a/, 2009).
More than half of those hospitalized after TBI developed
major depression in the first year, which predicts poorer
quality of life (Bombardier ez o/, 2010). With regard to
psychiatric diagnoses, a recent longitudinal study of over
1000 traumatically injured patients indicated that
patients with TBI, compared with other injury types,
were more likely to have developed PTSD and several
other anxiety disorders 1 year later (Bryant er 4/, 2010).
Not surprisingly, the association of 'TBI and PTSD with
multiple comorbidities has proven to be particularly
challenging in developing and implementing models of
coordinated healthcare (Sayer ez 2/, 2009).

Neuropathological and neuroanatomical
features in traumatic brain injury

One way in which TBI can be classified is by either
primary or secondary brain injury (vs. primary or qua-
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ternary brain injury to person described earlier). Neuro-
pathological and microvascular changes associated with
primary TBI include hemorrhages in the white matter,
neuronal degeneration, subdural hemorrhage, venous
engorgement, and perivascular space enlargement (Ray
er al., 2002). In reviews of the TBI literature, 59% of the
cases showed hippocampal atrophy as the major lesion
as identified by magnetic resonance imaging (MRI)
(Orrison ez @/, 2009). Although the shearing forces from
blast injury primarily affect deep frontal white matter and
subcortical structures (Cicerone er @/, 2006), the more
common tensile effects produce axonal stretching (Buki
and Povlishock, 2006) that can result in traumatic axonal
injury ('TAl), more commonly called diffuse axonal injury
(DAI). In mTBI, such tensile effects on the axon can
be significant and can produce a pathological cascade
that makes the neuron dysfunctional. Autopsy findings
from patients with TBI showed that DAI/TAI is most
frequently reported in the cortical lobes, corpus collosum,
and brainstem (Belanger ef @/, 2007). In combat, veterans
with chronic postconcussive syndrome symptoms show
a consistent regional hypometabolism in medial temporal
brain regions from positron emission tomography studies
(Peskind ¢z @/, 2010). US veterans from OEF with major
depression after blast-related concussion showed greater
regional activation (compared with blast-related con-
cussed veterans without depression) in a limbic region
(amygdala) during fear trials. During these fear trials of
depressed veteran’s postconcussion symptoms, acti-
vation is reduced in the dorsolateral prefrontal cortex,
a fear inhibitory brain region (Matthews e 4/, 2010).
Thus, it seems that the prefrontal cortex, medial
temporal regions, hippocampus, amygdala, and corpus
callosum represent brain regions of interest in TBL.

Although DAI sometimes occurs when neurons are
mechanically torn at the moment of impact, TAI is more
common and is a progressive event that evolves from focal
axonal alteration to delayed axonal disconnection (Buki
and Povlishock, 2006). TAI/DAI produces both antero-
grade and retrograde degeneration and disconnection over
several months postinjury. It is hypothesized that this
axonal degeneration and disconnection contribute to the
associated neurocognitive and behavioral deficits. TAI/
DALI is often not visible with conventional computerized
tomography and MRI, but may be seen with diffusion
tensor imaging, a type of diffusion MRI that measures
the functional integrity of white matter but has not yet
shown clinical utility The delays in disconnection of
TAI/DALI highlight that the process is potentially amenable
to therapeutic intervention (Buki and Povlishock, 2006).

In contrast to the immediate occurrence of primary TBI,
secondary TBIs develop over a period of hours or days
after the initial impact to the head. Resulting from
cellular processes triggered by the trauma, secondary
injury is associated with the synthesis and release of




430 Behavioural Pharmacology 2010, Vol 21 No 5&6

various neurochemicals that affect brain metabolism,
altered cerebral blood flow, ion homeostasis, and other
sources of neuronal injury that overlap between TBI
and PTSD (Ray e af., 2002; Risling er a/, 2010). The
mechanisms of neuronal and vascular damage include
calcium-mediated cell toxicity through proteolytic path-
ways, glutamate-mediated excitotoxicity, swelling and
rupture of mitochondria, production of oxygen-free
radicals, release of apoptotic substances and inflammatory
cytokines, and secondary damage from mass lesion
formation and ischemia (Ray & «/, 2002; Buki and
Povlishock, 2006). Exposure to the primary blast wave in
experimental rat models also produces alterations in
neural gene expression, including the downregulation of
genes involved in neurogenesis and synaptic transmission
(Risling ez al., 2010).

After primary and secondary brain damage in TBI,
neurons seem capable of reorganizing and repairing
connections. After axonal disconnection, there is the
possibility of subsequent neuroplastic changes that can
lead to either favorable changes or maladaptive repair
(see Fig. 1). More severe TBI often induces maladaptive
changes that result in inappropriate neuronal growth (Erb
and Povlishock, 1991; Phillips e @/, 1994) and continued
neural disconnection. Proteinases seem to assist in re-
connection processes by enabling synaptogenesis in the
neuropil, and can influence the neural growth patterns
(Reeves et al, 2003). Though a small proportion of
damaged neurons may show severe damage early after
TBI because of activation of proteases, most injured

Fig. 1

axons die more gradually. This progressive neural dys-
function could be reduced using rationally targeted
therapies that target proteolysis, mitochondrial damage,
and cytoskeletal alteration, or neurotrophic factors such
as BDNF that can facilitate reconnection in TBI (Buki
and Povlishock, 2006).

Neuropathological and neuroanatomical
features in post-traumatic stress disorder
PTSD is a condition in which much of the neural damage
is similar to the secondary injuries found in TBI. PTSD
has been associated with structural abnormalities such
as reduced volume in medial prefrontal cortex structures
(Rauch ez af., 2003; Yamasue ¢7 a/., 2003; Kasai er @/, 2003),
and in the hippocampus (e.g. Gurvits e @/, 1996;
Gilbertson er @, 2002) and amygdala (Karl ez 4/, 2006).
Within the hippocampus, PTSD is also associated with
specific volume loss of the CA3 and dentate gyrus
subfields, suggesting that severe or chronic stress sup-
presses neurogenesis and dendritic branching in these
subregions (Wang e ., 2010). These reductions in
hippocampal volume are associated with functional deficits
in hippocampal-based memory (Bremner e @/, 1995). This
last study used MRI to measure hippocampal volume in
Vietnam combat veterans with P'1'SD and controls. Deficits
in verbal memory were associated with reductions in
hippocampal volume only in the patients with PTSD.

In both TBI and PTSD, inadequate frontal inhibition
of the limbic structures results in exaggerated amygdala
responses and resultant heightened responsivity to

3. Repair

1. Primary injury

Shearing and tensile effects — traumatic axonal injury
and neuronal disconnection

2. Secondary injury

Neuronal and vascular damage — proteolytic
pathways, excitotoxicity, oxygen-free radicals,
apoptosis, inflammatory processes, and ischemia

Increases in BDNF and neurotrophic factors —
reconnection through fiber sprouting and synaptogenesis

Pathogenesis in traumatic brain injury and role of brain-derived neurotrophic factor (BDNF). Acute traumatic brain injury is characterized by two injury
phases, primary and secondary. Primary brain injury is the direct injury to the brain cells incurred at the time of the initial impact with traumatic and
diffuse axonal injury, whereas secondary brain injury is caused by a combination of ischemic, inflammatory, cytotoxic, and apoptotic processes.
Evidence suggests that reactive increases in BDNF play a prominent role in the cellular events that occur after brain trauma. This suggests that
BDNF may provide a neuroprotective and repair function and restore connectivity in disrupted areas after brain injury.
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Neural circuitry of post-traumatic stress disorder (PTSD) and its associated changes in brain-derived neurotrophic factor (BDNF) neuroplasticity.
The prefrontal cortex (PFC), hippocampus, and basolateral amygdala (BLA) are key sites of synaptic plasticity and mediate the acquisition of fear
conditioning and its extinction. Fear-related sensory information enters the amygdala through its basolateral nuclei. The hippocampus is critical

in contextual associative learning, memory consolidation, and the retrieval of episodic memories. The PFC and anterior cingulate cortex send
glutamatergic excitatory projections (dashed lines) to the sites of fear memory storage in the BLA, and also project to GABAergic neurons and
projections (straight line) of the intercalated cell masses positioned between the two amygdala subregions. It has been hypothesized that extinction
learning in PTSD represents an increase in excitatory drive to the intercalated cell masses and decreased output from the BLA. Projections from the
central nucleus of the amygdala provoke expression of fear responses through downstream projections to the midbrain and hypothalamic regions.
Chronic stress can impair prefrontal cortical and hippocampal functioning by producing dendritic retraction, restructuring, and disconnection. BDNF
protein levels are shown to be reduced in the PFC and hippocampus in PTSD, which may result in impairments in regeneration, reconnection, and

dendritic sprouting in these regions. GABA, y-aminobutyric acid.

potential threat. Both the hippocampus (Rauch e 4/,
2006) and medial prefrontal cortex (Liberzon and
Sripada, 2008) are critical for processing contextual
integration related to fear responses. In PT'SD, functional
imaging studies have shown decreased activation in the
hippocampus, anterior cingulate, and orbital frontal
cortex in response to symptom provocation (e.g. Rauch
et al, 1996; Lanius ef @/, 2001; Shin e @/, 2004), and a
simultaneously exaggerated response of the amygdala
(Rauch er @/, 2006). Impairments in medial prefrontal
activation are hypothesized to result in repeated re-
experiencing of traumatic memories in PTSD (Rauch
et al., 2006). In addition, reductions in anterior cingulate
cortex function are hypothesized to produce impairments
of emotional self-control and behavioral response to
changing contexts in PTSD (Schuff ez o/, 2010).

The hippocampus normally displays structural plasticity
through synaptogenesis, dendritic remodeling, and neuro-
genesis. After chronic stress, elevations in excitatory
amino acids and glucocorticoids suppress hippocampal
neurogenesis and potentiate the damage produced by

ischemia and seizures (McEwen, 2007). Many animal
studies show that chronic or severe stress produces
changes in hippocampal, prefrontal cortical, and anterior
cingulate structure and function, through increases in
circulating glucocorticoids, reductions in neurotrophic
factors, and impairment in neurogenesis (Bremner, 2006;
Schuff ez af., 2010). Genetic mechanisms for PTSD come
from autopsy samples showing genetic abnormalities
associated with mitochondrial dysfunction, oxidative
phosphorylation, and apoptosis (Su ez @/, 2008). In P'T'SD
and TBI, the brain shows capacity for plasticity with
cognitive treatments, antidepressant medication, and
environmental enrichment, which all can reverse the
effects of stress on hippocampal neurogenesis (Bremner
et al., 2008). As a mechanism for neuroplasticity and
neurogenesis, neurotrophic factors have been a source
of adaptation in both TBI and PTSD.

Roles of neurotrophic factors in cortical and
hippocampal plasticity

Neurotrophins (N'Is) have well-established actions in
regulating cell growth and survival, differentiation,
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apoptosis, and cytoskeleton restructuring. Four N'T§ have
been characterized in mammals — neural growth factor,
BDNE N3, and N'T:4 — with similar sequence and
structure (e.g. Hallbook, 1999). Though derived from a
common gene, NI interact with structurally and func-
tionally different receptors: the tropomyosin-related tyr-
osine kinase (Itk) receptors and the p75 N'T receptor
(Lipsky and Marini, 2007). Each receptor has differing
specificity for ligands and activates different intracellular
cascades. Through these receptors, N'Ts are involved in
the processes of synaptic transmission and neuronal
plasticity (Lu, 2003). Plasticity refers to modification of
brain substrates as a result of some changes in condition
(i.e. experience), with the assumption that such modifica-
tion is adaptive for the continued survival and optimal
functioning of the organism. Though the vast majority of
neurons in the mammalian brain are formed prenatally,
they are subject to modification over time. N'T synthesis is
rapidly regulated by neuronal activity and N'T5 are released
in an activity-dependent manner from neuronal dendrites.
This knowledge, along with findings that N'T¥ enhance
transmitter release, suggests a role for N'Is as selective
retrograde messengers that regulate synaptic activity.
Consequently, N'Ts and their receptors maintain brain
plasticity in healthy individuals and those suffering from
neuropsychiatric disorders (Lipsky and Marini, 2007).

Much of this focus has revolved around BDNE an NT
that has emerged as a major regulator of both synaptic
transmission and plasticity at adult synapses in many
regions of the central nervous system. BDNF has been
variously shown to increase the survival of neurons, and to
increase synaptic transmission (Lipsky and Marini, 2007),
long-term potentiation, and long-term depression, along
with certain forms of short-term synaptic plasticity (Desai
et al, 1999). These BDNF effects have implications for
the formation of memories, in healthy individuals and
those with impairments in memory and cognition, as
found in TBI and PTSD. This unique role of BDNF
within the NT family is attributable to its widespread
distribution and the colocalization of BDNF and its
receptor, TtkB, at glutamate synapses.

Role of brain-derived neurotrophic factor in
traumatic brain injury and post-traumatic
stress disorder

Several lines of evidence suggest that N'Ts play a pro-
minent role in the cellular events that occur after brain
trauma. Of the two categories of 'TBI, direct primary
injury and subsequent secondary injury, research indicates
that N'ITs may play a large role in the latter. As discussed
earlier, secondary brain injury is caused by a combination
of subsequent ischemic, inflammatory, cytotoxic, and
apoptotic processes. BDNF seems to play a major role in
reducing the impact of secondary brain injury, through
alterations in BDNF-induced gene expression in trauma-
tized tissue. In addition BDNF can affect remote areas

subjected to secondary mechanical stress, and brain
areas connected by fiber pathways to the injured zone.
Many studies also show increases in hippocampal BDNF
mRINA after experimental brain trauma of moderate
severity for several hours or within days of injury. Brain
injury in animal models, such as penetrating brain
injury (Nieto-Sampedro e 2/, 1982), cortical ablation
(Whittemore et af., 1985), or deafferentation (Needels
et al., 1986), has been shown to acutely increase NT
levels, BDNF expression is increased in the cortex
(Oyesiku e al, 1999; Griesbach er af, 2002) and
hippocampus (Hicks e @/, 1997; Grundy er a4/, 2000)
hours after experimental brain injury in rats. Increases in
BDNF mRNA within the cortex are accompanied by an
increase in BDNF protein for several days after injury
{Oyesiku e 4, 1999; 'Truettner er 4/, 1999; Griesbach
et al, 2002; Mahmood e af, 2009). Levels of BDNF
mRNA or protein expression after TBI were elevated in
the cortex and hippocampus for several weeks in another
study (Chen ¢ /., 2005). The limitations of these studies
are that they use different animal models of TBI and
different measures of BDNE Genetic knockout studies
suggest that BDNF may provide a neuroprotective and
repair function and restore connectivity in disrupted areas
after brain injury (Gao e /., 2009).

A large body of research indicates that dysregulation
of BDNF is found in conditions of TBI and PTSD. In
TBI, BDNF and other N'T5 reduce secondary injury,
provide neuroprotection, and restore connectivity. In
contrast, chronic stress or prolonged exposure to gluco-
corticoids can reduce BDNF levels and impair hippo-
campal functioning, by producing dendritic retraction,
restructuring, and disconnection. Dendritic retraction
after stress may persist for weeks, months, or even vears,
and may increase the period of hippocampal vulnerability.
These studies are from animal models of stress or fear
conditioning and therefore their relationship to human
populations is unclear. Repeated stress can lead to
neuronal atrophy and loss in several brain regions,
including the hippocampus (McEwen, 2000; Duman
and Monteggia, 2006), and it reduces the expression of
BDNF mRINA expression (Smith e @/, 1995; Duman and
Monteggia, 2006). Similarly, subjects showing ongoing
behavioral disturbances after stress showed BDNF down-
regulation and TtkB upregulation in the CAl subregion
of the hippocampus, compared with controls. (Kozlovsky
et al., 2007). Chronically elevated cortisol exposure in rats
(similar to chronic stress) also produces reductions in
BDNF in the ventromedial cortex (Gourley ef &/, 2009)
that was associated with stress-related behaviors.
Rasmusson ez 2/, (2002) showed that repeated footshocks,
co-terminating with associated tones, decreased hippo-
campal BDNF mRNA expression. After a return to
normal 2 days later, re-exposure to the fear context and
fear cues decreased hippocampal BDNF mRNA. Simi-
larly, early life stress produces enduring downregulation
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of BDNF mRNA and protein levels in the hippocampus
CAI1 subregion, and this effect may underlie changes in
neural plasticity and synaptic functioning (Bazak e af.,
2009). There are very limited studies in humans verifying
these studies in animal models. For example, there is a
significantly lower level of plasma BDNF in patients with
PT'SD, compared with healthy individuals, suggesting its
possible involvement in the pathophysiology of PTSD
in humans (Dell’osso e 4/, 2009).

Through BDNF expression, the hippocampus can poten-
tially recover from dendritic retraction without any
discernable loss of neurons (Conrad er @/, 2008). For
example, induction of BDNF and activation of its
intracellular receptor TrkB can produce neural regenera-
tion, reconnection, and dendritic sprouting, and can
enhance synaptic efficacy (Lipsky and Marini, 2007).
Although chronic defeat stress-induced hippocampal
BDNF downregulation, antidepressant treatment re-
versed this effect, through chromatin modification at
BDNF promoters. Thus, BDNF expression and histone
remodeling may be critical in the pathophysiology and
treatment of chronic stress (Tsankova er @, 2006).

Genetic studies highlight the importance of BDNF in
anxiety and stress. An inbred genetic knockin mouse
strain expressing a human variant BDNF (associated with
PTSD) showed the behavioral effects of the human
polymorphism (Soliman er @/, 2010). In this study, both
humans and knockin mice with the BDNF wvariant
showed impairments in extinction learning to condi-
tioned fear, thus indicating that the BDNF allele may be
relevant to the efficacy of cognitive treatments using
extinction learning (i.e. exposure therapy) in anxiety
disorders. Mice with another BDNF genetic variant
(Val66Met) showed slower extinction learning compared
with wild-type mice, a learning impairment that can be
reversed with a cognitive enhancer drug, D-cycloserine
(Yu ez /., 2009). This genetic variant mouse also showed
reduced volume and dendritic complexity in the ven-
tromedial prefrontal cortex, a region critical to extinction
learning. In summary, data from these studies in animal
models suggest that conditioned cue-associated and
context-associated fear and unconditioned stress decrease
hippocampal and prefrontal cortical BDNF levels. In
PTSD models, the loss of neuroprotective BDNF may
result in atrophy of the hippocampus and ventromedial
prefrontal cortex, and may produce deficits in hippo-
campal-based memory and extinction learning in fear
conditioning (Bremner, 2006; Yu e /., 2009).

Brain-derived neurotrophic factor treatment
approaches for traumatic brain injury and
post-traumatic stress disorder

As we described earlier, adult brains have the ability to
recruit and regenerate new neurons that are lost by injury or
disease, with neurogenesis being shown in the hippocam-
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pus, striatum, thalamus, septum, and hypothalamus in
healthy humans (Pencea ez e, 2001). This ability is thought
to be affected by N'Ts that can enhance neuronal survival,
stimulate neurite sprouting, and increase functional con-
nectivity. As a mechanism for neuroplasticity, neurotrophic
factors have been a source of adaptation in both TBI and
PTSD. As both TBI and PTSD are associated with
overlapping neuropathological changes, neurochemical
dysregulation, and deficits in neural structure and func-
tion, increases in BDNF have been postulated to
enhance connectivity and function. Consequently, this
section focuses on different treatment approaches to
increase BDNF so as to repair neural connections and
reduce the behavioral sequelae of TBI and PTSD.

Therapeutic strategies that administer BDNF after TBI
have been shown to be neuroprotective in animal models
and may have therapeutic value in humans. As there are
limited therapeutic studies using BDNF as a treatment,
studies using spinal cord illustrate some of the potential
utility of this agent, for example, N'Ts have been shown
to protect injured nerve tissues by reducing axonal
degeneration (Sayer er 4/, 2002) and by inhibiting
apoptosis (Cao er @/, 2002). These studies have limits
in applicability in that they were performed in spinal cord
preparations. In mild ischemic brain injury, continuous
intracerebral infusion of BDNF protects against striatal
neuronal loss (Galvin and Qorschot, 2003). BDNF
infusions reversed stress-induced impairments in spatial
learning and memory and enhanced hippocampal long-
term potentiation in rats (Radecki ez @/, 2005). Another
study examined the delivery of bone marrow stromal cells
cultured with BDNF protein (Mahmood e &/, 2002).
Cells were transplanted into adult rat brains after contro-
lled cortical impact and the subjects receiving stromal
cells with BDNF had a higher number of engrafted cells
and better motor function. Using human mesenchymal
stem cells transfected with a mutant adenovirus vector
with the BDNF gene, stem cell therapeutic effects
have been measured after brain injury in rats (Nomura
et al., 2005). In this study, after middle cerebral artery
occlusion, stem cells reduced lesion volume and en-
hanced function compared with control treatment.
However, the effects were greater in the BDNF-human
mesenchymal stem cell group versus the control stem cell
group. Similarly, intravenous human mesenchymal stem
cell treatment increased neurological functional outcome
and BDNF levels in rat 'TBI models (Kim ez 2/, 2010).
However, some results of studies attempting BDNF
treatment have been negative in animal models. Rats
undergoing TBI in the parictal cortex and treated with
intracranial infusions of BDNF for 2 weeks did not show
improvements in neurological function, learning, memory,
or neurcnal loss (Blaha ef 2/, 2000). In addition, in genetic
studies of BDNE/TtkB overexpression in the hippocam-
pus of mice, there was no protection for controlled
cortical impact brain injury, as measured by motor
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function or pyramidal neuronal survival (Conte e af,
2008). The effects of BDNF treatment on brain injury and
function seem to vary greatly in these heterogeneous
models and treatment delivery systems. To understand
BDNF treatment effects, some degree of standardization is
needed in animal models, drug delivery systems, and
measures of neural and cognitive function.

Antidepressants are partially effective treatments in
PTSD and TBI, some effects of which seem to be
mediated by activating the BDNF pathways (Chen e a.,
2006; Martinowich ef &/, 2007). As mentioned, mice with
a Val66Met BDNF genetic variant showed impairments
in extinction learning that could be reversed with a
cognitive enhancer drug, D-cycloserine (Yu ez @/, 2009).
Moreover, chronic treatment with the tricyclic antide-
pressant desipramine, the selective serotonin reuptake
inhibitor fluoxetine, and the monoamine oxidase inhibitor
phenelzine increased BDNF protein levels in the frontal
cortex (Dias er @/, 2003). In contrast, mice lacking the
TikB receptor in hippocampal progenitor cells show
impairments in neural proliferation and neurogenesis, and
show insensitivity to antidepressant treatment in depres-
sion and anxiety models (Li ez o/, 2008). Nonetheless,
antidepressants are only partially effective in their treat-
ment of PTSD and are known to cause significant and
negative side-cffects. Consequently, agents that selectively
enhance BDNF levels and increase synaptic plasticity and
reconnection may be more effective treatment options.

One indirect approach for enhancing BDNF is through
exercise. In one study, in which rats received either sham
injury or TBI and were housed with or without access to
a running wheel, brain-injured rats showed increased levels
of BDNF and enhancement of cognitive performance
following exercise (Griesbach & @/, 2004). Thus, exercise
might enhance cognitive performance in PTSD and TBI
models through BDNF mechanisms. Another way to
enhance BDNF is through chromatin remodeling, a process
in which post-translational changes in histones produce
alterations in gene expression. BDNF has four transcripts,
which are each regulated by a specific promoter that is
sensitive to epigenetic modification (Martinowich e /.,
2003). Bredy ez @/ (2007) show a relationship between
histone modification, epigenetic regulation of BDNF gene
expression, and extinction learning. In cellular and animal
models, histone deacetylase inhibitor (HDACI) treatment
increases BDNF expression in neuron—glia cultures (Wu
et al, 2008), glioma cells (Morita e @/, 2009), and when
given s vive in various brain regions (Kim e @/, 2009). The
implication is that HDACis may be more specifically
effective as treatments for PTSD and TBI through the
enhancement of synaptic plasticity. Studies are needed
in both TBI and PTSD animal models and in humans to
examine the promise of these agents.

HDAC!s such as valproate and sodium butyrate (SB) have
been shown to enhance long-term memory and learning

(Bredy er al., 2007; Lactal er /., 2007). Valproate has been
shown to strengthen reconsolidation of the original fear
memory or enhance long-term memory for extinction,
such that it becomes independent of context (Bredy and
Barad, 2008). In addition, brain-injured rats treated with
SB show enhanced neurogenesis in a variety of regions
including the subventricular zone, hippocampus, stria-
tum, and frontal cortex (Kim e «/, 2009). Other TBI
studies in rats suggest a similar effect of another
commericially available medication, simvastatin, on hip-
pocampal BDNF levels and neurogenesis that is asso-
ciated with cognitive enhancement (Wu e &/, 2008). The
omnipresence of HDACis makes their pharmacological
inhibitors potential therapeutic tools in neuropsychiatric
disorders such as TBI and PTSD. In addition, the fact
that both SB and the antidepressant fluoxetine have been
shown to reduce ‘behavioral despair’ in animal models has
potential implications for the novel use of HDACGIs as
adjuncts to behavioral therapy in the extinction of
conditioned fear responses and in PTSD (Schroeder
et al., 2007). However, much more basic and human
research is needed in this area.

In TBI and PTSD, there are overlapping cellular and
genetic abnormalities in the prefrontal cortical, hippocam-
pal, and other regions, resulting in well-characterized neural
and behavioral deficits. A large body of research indicates
common pathophysiological brain mechanisms, resulting in
dysregulation of BDINE in both TBI and PTSD disorders.
As a treatment, BDNF improves synaptic transmission and
efficiency and increases the survival of neurons. This
unique role of BDNF may be critical in reversing dendritic
retraction, restructuring, and disconnection that is found in
TBI and PTSD. Future studies are needed to examine
better the role of BDNE using better-standardized animal
models of TBI and PT'SD, and in humans. New preclinical
and clinical studies are needed to test the effects of BDNF
and its analogs, along with HDACis, which increase BDNF
levels, on neural repair, reconnection, and their clinical
correlates.
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